Veritone’s patented CDI (Cooperative Distributed Inferencing) technology forms the backbone of Veritone Energy Solutions, delivering real-time dynamic modeling and control that ensures predictable energy distribution and resilience across the grid.
CDI is the grid modeling and learning core of Veritone Energy Solutions. CDI leverages forecast data and rules to build and continually update device state models, which are then used to intelligently control edge devices.
CDI self-learns and adapts to ensure all energy devices in a microgrid, such as solar and battery power, deliver optimal energy at peak demand times and continue to operate autonomously if isolated from the main grid due to extreme weather or natural disaster.
The Veritone Forecaster, Optimizer, and Arbitrage solutions leverage CDI to perform their functions. CDI works hand-in-hand with the Veritone Controller solution, which is a dynamic, incremental feedback control system that obtains sensor-based environmental information and produces actions to control a network of electric microgrid devices including distributed loads, solar panels, batteries, and utilities. See how these four Veritone Energy Solutions work together.
Veritone’s patented CDI (Cooperative Distributive Inferencing) technology uses real-time dynamic modeling to dramatically improve the performance of complex grid operations. The CDI Tomograph continuously constructs a control model of a complex system in real-time as the system evolves with changing conditions.
Other solutions on the market simply learn static model parameters, while Veritone applies dynamic, adaptive learning to models. With CDI, the system is always operating at peak performance as each device’s edge controller gets its instructions from the most accurate model possible at any given time considering changing environmental conditions.
CDI also uses a distributed agent-based approach that reduces overall processing requirements while drastically improving latency. Systems and devices including batteries, solar inverters, and wind turbines are synchronized both with each other and the grid, allowing for autonomous energy grid management via Veritone’s predictive intelligent controllers, and resulting in estimated energy efficiency improvements in the range of 15-25%.
Unlike competitive energy offerings that focus on a single aspect of energy management, such as:
Veritone’s CDI-based energy solutions provide all needed capabilities in a single integrated system, fusing together real-time forecasting, economics, rules, and real-time learning for device and network model building/updating to deliver autonomous energy grid management and control.
CDI uses hard and soft rules for edge controller components, along with a mean field-based dynamic synchronization of the network, to perform a real-time construction and updating of device models under control via a tomograph. CDI then generates a tracking signal representing the most optimal model at any point in time. That model combines dynamic, optimal demand satisfaction with rules describing device longevity, operational limits and other device characteristics.
This CDI tracking signal is sent to the edge controller, which generates an implementable signal that controls a physical energy device.
Distributed CDI agents are dynamically synchronized through the mean approach with a blackboard architecture that collects and transfers information and ensures optimization and synchronization of energy across a distributed energy network.
The Veritone Energy CDI and edge control system combines data acquired in its ML-based knowledge base, distributed CDI agents, edge controllers and sensors to control components in the network for optimal energy dispatch.
Key technical components of the overall Veritone Energy CDI and edge control system include: